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ON THE STABILITY OF RODS FOR STOCHASTIC EXCITATIONS* 

V.D. POTAPOV 

The stability of lnotion of an elastic rod in a viscous medium compressed 
by a randomly acting force is studied. The conditions of stability of 
the rod acted upon by a stationary process with bilinear spectral 
density are obtained. The dependence of the statistical moments of the 
amplitude of the finite flexure of the rod under stationary-motion 
conditions on the parameters of the compressing force and the amplitude 
of the initial deformation is analysed. A number of problems concerning 
the stability of longitudinal flexure of viscoelastic constructions 
acted upon by random loads were discussed in /l-3/. 

1. A stationaryi process r&h ratitnd-fraction spectral density. Let us consider an 
elastic rod of length 2, hinged at each end and compressed by forces F. The rod is in a con- 
tinuous viscous medium and its equation of equilibrium has the form 

awlat = --A {ElwIV + IF, + F, (C)l w”} (1.9 

Here d is the viscosity constant of the material of the medium, F,, F, (t) are the 
deterministic (constant with respect to time) component of the compressive load, and a 
random oscillation with zero expectation value. 
accepted one. 

The remaining notation is the generally 

Let the deflection of the rod at the initial instant be described by the sinusoid 

w (0, z) =: fk” sin (knxil) 

We shall seek a solution of (1.1) in the form of such a sinusoid, whose amplitude fk (t) 
is a solution of the equation 

fh! is a deterministic constant). 
Let us assume that the randoln process 

noise" through a linear filter 
@(r) is the result of the passage of normal "white 
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d$/dti + a,di-l$ld+l + . . , + a& = pg (1.3) 
where al, . . ., ai, c1 are constants. 

In the quasistatic formulation,the solution of the stochastically non-linear problem 
reduces to solving a system of two differential equations with initial conditions 

fk (0) = fro> II, (0) = d$idr lrZO = . . . = di-lqidz’-l jr=, = 0 

The unknown functions fk,$, d$ldr, . . ., &-r$ldzi-l determine the components of a multidimen- 
sional Markov process and their combined probability distribution density can be found from 
the Fokker-Kolmogorov (FPK) equation. It should be noted that this equation has the same form 
in the sense of Ito as well as of Stratonovich when white noise is considered. 

Introducing the new variable zk = ln fkl we can reduce the non-linear problem to a linear 
one, and 

dz,ldr = -k4 [(I - ak) - /!&$I, zk (0) = In fko (1.4) 

In order to determine the distribution density of the process zk at the instant r, it 
is sufficient to find its expectation value and variance. 

Averaging the left and right-hand sides of (1.4) over the set of samples, we obtain the 
equation for the expectation value. Integrating this equation we obtain 

<zk> = In fko - k4 (1 - ak) + 

The random fluctuation of the function zr 

dz,*jdz = k*Bkv’, 

which yields, taking (1.3) into account, 

d'+lz * 
---&+a,~; 

(1.5) 

is found from the relation 

zk* = zk -(zr> (1.6) 

whose solution is found using the Laplace transformation 

Z (P) = k4f'kk!- (PA (P))-‘p (P) 
A (p) = pi + a&l + . . + ai 

(z(p) =fe-pzk*(z)dr, F(p) =iWg(T)dr) 
D 0 

(1.7) 

We shall impose one restriction on the constant coefficients of Eq.Cl.3): we shall assume 
that the roots pl,pa, . . . . pi of the characteristic equation A(p) = 0 have negative real 
roots. 

The expression (pA (p))-' can be written in the form 

- = + + 2 2 CjA) (p - jJj)-'Y 
1 

PA (P) 
Yl + VI + . . . + Y, = i 

54 A=1 

where vi is the multiplicity of the root p,, cl th) are constants which can be found by com- 
paring the coefficients of like powers of p in the numerators of the left and right-hand sides 
of (1.8). 

Taking into account (1.8) we obtain, from (1.7), 

(Z:(~))=k’B**psL~+dS~(r,e)de +f~@,e)dej 

0 
m vj-’ 

@be) r= y c (X1 I)! ~1~) 63~~ [pj (7 - e)] (T - e)h-1 
j=I *=I 

(1.9) 

The probability distribution densities of the random functions zk (.t), fk(T) are given by 
the expressions 

*a 
u [zk (z)] = [2n (zr (z))]-“* exp 

["I( (=) - ('k ('))la 
- 

2 &t)> 

*= 
q[fk @)I = izn <zk b)> fk2 (r)l-“‘exp 

w f, CT) - (“k (ala 
- 



Having obtained these densities, we can find the ?a-th order moments 
amplitude of the rod 

(fkn (T)> = (exp [rzz, (z)l> = exp In <zk (T)> + '18 <+*I @)>I 
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of the flexure 

(1.10) 

The integrals of the functions @ (.c, e), (Da (.t, 0), in (1.9) contain terms of the type 

T 

1 
z1= (h-Q, CP’ s '(Z-0)'-'exp [Pj('-e)]de 

Cl 

Since the real parts of the roots pl, p%,...,pj are negative, it follows that the 

quantities I, will tend, as z increases, to constant values depending on cl'), pj and 1. 

Thus, beginning from some fairly long instant of time z, the following relations will 

hold for the moments vkn (z)>: 

Qkn (z)> Q fknn exp I-nk' (1 - Uk) z + 'lzn~P~t~y*a~-2z + constl 

This implies that when the time increases without limit, the static moments of the 
flexure amplitude of the rod will tend to zero, provided that the following conditions hold: 

czk < 1 - '/,np%z~-*J~+~~ = 1 - llln~aui-*filz (1.11) 

Thus the inequalities (1.11) represent the criterion of asymptotic n-stability /4/ Of 
the motion of the rod (also asymptotically stable with respect to the n-th order moments of 

the solution of (1.2)). Since ak < % when k>l, it is clear that conditions (1.11) will 
hold for any k, provided it holds for k = 1. 

This leads us to the following conclusion. If the motion of the rod is asymptotically 
n-stable in the case when the initial distortion of its axis can be described by a single 
sinusoidal half-wave, it will also be asymptotically stable in the case when its initial 
flexure is described by a single sinusoid with a large number of half-waves. We note that in 
the course of analysing the stability of an elastic rod in the deterministic formulation, the 
critical Euler force is also determined from the condition that the distortion of the rod axis 
at the instant of bifurcation is described by a single 'sinusoidal half-wave. 

We shall give, for comparison, the condition of stability obtained in /l/ under the 
assumption that the process Q(T) represents white noise 5(z) in the Stratonovich sense. In 
this case the condition of asymptotic stability of the trivial solution of Eq.(1.2) with 
respect to the n-th order moments was found to be as follows: ak < 'I*&~. The condition of 
asymptotic decay of the moment cfP(~)) (1.11) in the case of the random process 0 (T), with 
bilinear spectral density, is found to be exactly the same as in the case when we assume that 
the white noise intensity coefficient is equal to Plai. Therefore, the condition of stability 
of the slow motion of an elastic rod in a viscous medium can be obtained by considering not a 
system of i+l stochastic first-order differential equations, but a single (simpler) equation. 

Exa.v@e. Let us assume that the random process * (r) is the result of the passage of 
normal white noise through a linear first-order filter 

dqldz = -q$ + it, $ (0) = 0; q. p = const (1.12) 

From (1.6) and (1.12) we obtain 

The moments of the flexure amplitude of the rod are 

Q,"(T)) = {fkoexp[(-1 +a, +Vsn~*rl~P~*)k~+ n~l'rl-~@B~~(-~/r+e-~' -X/ce-"T)]}" 

It is clear that when the time increases without limit, the moments will tend to zero 
provided that condition (1.11) holds when oi= 9. 

2. Dy~mic formuZation of the probtem. In order to assess the effect of inertial forces 
on the stability of the rod acted upon by a longitudinal force in the form of a stationary 
random process, we shall study once again the same rod whose equation of motion differs from 
(1.1) by the additional term -Amd2widt2 on the right-hand side, where m is the mass per unit 
length of the rod, constant along its length. 

Assuming that the distortion of the rod at the initial and current instants of time can 
be represented in the form of a single sinusoid, we obtain the following equation for the 
amplitude of the flexure: 

d2f,kk2 + CPdf,!dT + k4QZ 11 - CC, - fi& (T)] fs = 0, P = zraEZl(m14y2) (2.1) 

Let us assume that the function II, (T) is normal white noise E(T). 
The theory of stability of stochastic systems contains a theorem /4/, according to which 

the necessary and sufficient condition for the mean square asymptotic stability of the solution 



800 

of Eq.(2.1) is that conditions AZ>0 and Aa> Al2 hold, where 

A9=ISY k4Q$__ax)/. A=lY ;2;1?Y;)j 

From this it follows that 

The second of these conditions is identical with the condition of mean square asymptotic 
stability of the rod in the quasistatic formulation of the problem /l/. 

The sufficient conditions were also formulated in /4/ for the asymptotic stability of the 
solution of (2.1) with respect to the statistical n-th order moments AZ>0 and Az>V, (n- 

1) 4 for which we have the following corresponding relations: 

'+<I? ak<1-1/z(n-i)812 

The last inequality is identical with the condition of asymptotic n-stability of the rod 
in the quasistatic formulation of the problem /l/, where they where both necessary and suf- 
ficient. 

Note that the conditions of stability of the rod as a dynamic system with one degree of 
freedom, acted upon by a force in the form of Gaussian white noise, were obtained in /5/. The 
application of the method of moment functions to the study of the stability of a rod acted upon 
by a stationary load with a rational-fraction spectral density was also discussed there. 

3. Stability of a rod as a system with an infinite ntmrber of degrees of freedom. Let US 
consider a rod whose flexure at the initial instant is equal to 

W(O,x)= FfkDsi*+-z 
k=i 

When the rod is excited by a load in the form of a stationary random process, the quasi- 
static formulation of the problem yields the following relation: 

w (z, x) = >‘ fk” 
k* 

exp[- k&(1 -ok)% + k*zl*(z)] sin qz 

When Ip (t) is a Gaussian process, the following relation holds: 

(exp I6z,* @)I> = exp P/,P <zl* @))I 

Taking this relation into account, we can write the expression for the statistical n-th 
order moment of flexure of the rod in the form 

Taking into account relation (1.111, we can write the condition of asymptotic stability 
of the rod with respect to the n-th order moments in the form 

a,6 < (iI + . . . + in4) - ‘1, (pat-‘6B,)* 

Taking into account the relation 

n&2(i,4 + . . . + i,4) _ 1 =g2[(ila - i,y i_ (i,Z - i,y -I- . . . + (iZ_1 - i,y 

we obtain 

It is obvious that the relation obtained for the dimensionless value of the expectation 
of the compressive force (a1 > 0) is satisfied the more, the more it is satisfied when i, = 
. . . = i, = 1: 

a, < 1 - '/,n (pUi-'fi1)" 

It follows, therefore, that the rod (as a distributed system) is n-stable with respect 
to an arbitrary (deterministic) initial flexural perturbation, provided that the condition of 
n-stability of the rod with respect to the initial flexural perturbation, specified in the 
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form of a single sinusoidal half-wave, is satisfied. We note that the argument also remains 
valid in the case when the amplitudes of the deflection of the rod at the initial instant are 
statistically independent of the load, and statistical n-th order moments exist for them. 

The result obtained is of fundamental importance. We recall 
that the condition of stability of the rod compressed by a constant 
(deterministic) force follows from an analysis of its behaviour 
when the deflection is in the form of a single sinusoidal half-wave. 
The presence in the expansion of other sinusoids (with high order 
number) affects the magnitude of the deflection, but does not alter 
the condition for its stability. It is clear that in case of a 
stochastic formulation of the problem the situation is analogous. 

4. The stationary so&don in.the case of finite deflections 
of the rGd* Let us consider a rod with initial deflection w,(s). 
In order to simplify the arguments which follow, we shall assume 
that a viscous coupling is applied at the middle of the rod, 
causing the reaction G ==--2~' (Al) iFig.1). Assuming that the 
deflections of the rod are finite but fairly small, we can write 
the equation of slow motion 

Fig.1 

When 112 Q S< I, an analogous expression is obtained from the condition that the rod is 
symmetrical. 

Let us assume that w. (s) = f. sin nl%-. We shall seek W&S) in the form 

w (t, s) = f (t) sin nl-4 

After applying the Bubnov-Galerkin-Kantorovich-Vlasov procedure, we obtain from 14.1) 

dC/dr = -v [5 (1 + %C?) - 500 + '/&?) --a5 i- x5*(5 - 50 - o5)J; 

We shall assume that CC = a, + &e(z); a,, #& = con&, E (T) is Gaussian, delta-correlated 
"white noise". 

In what follows we shall restrict ourselves to considering only a stationary mode, for 
which the FPK equation will take the form (au/& = 0) 

and 

~=~~i(~-~,)5-501(~f~52)+1is~5S-5a3))r E==uBrC(f+x<r) 

The amplitude distribution density of the deflection of the rod is given by the expression 

U(C) = cc-P(1 + @)Pl*-~eXp 

The constant c is found from the normalization condition, given above in the brackets. 
The statistical n-th order moment of the quantity 5 is equal to 

(4.2) 

Let us assume that f0 ~0. Then we have 
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The necessary condition for the existence of the distribution density v(tJ and statisti- 

cal moments is that the following conditions hold: 

a, > 1 + '/a PBIa, a, > 1 - 'la@ - 1) p&a@< 5) (4.3) 

Clearly, when the first relation holds, so does the second. 
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By considering the linear problem we can show that 

a1 < 1 - '12 (n - 1) VP12 (4.4) 

represents the condition of asymptotic n-stability of the motion of a straight rod. We see 

that the inequalities (4.3) are opposite to the inequality (4.4). This implies that when the 

conditions of asymptotic stability of the motion of the rod are violated, a stationary mode 
may appear. The existence of amplitude distribution density of the stationary mode represents 
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the criterion for its appearance. 
here we observe the analogy between the results of solving the stochastic and the deter- 

ministic problem. 
Indeed, when a straight rod is compressed by a constant (deterministic) force smaller 

than the Euler force (c,<i), we have only a single form of equilibrium which is rectilinear 
and stable. On the other hand, if the force is greater than the Euler force (a, > i), then in 
addition to the rectilinear equilibrium we have another, - the flexural form of the equilibrium 
of the rod, and the first form is unstable, while the other form is stable. 

Analysis of expression (4.2) shows that when b*O, the moment (6%) exists for any 

%, Pl when n<5. We note that in the case of small deflections the statistical n-th order 
moment exists only when conditions (4.4) hold. 

Here it is again relevant to note the analogy between the solutions of the deterministic 
and stochastic problems. When we consider the linear deterministic problem of the longitudinal 
flexure of the rod whose axis is curved at the beginning, a solution will exist if the com- 
pressive force is smaller than the Euler force &<I). If, on the other hand, we take into 
account the finite deflections of the rod, then a solution of the problem will exist for any 
value of the compressive force. 

It is interesting to compare the results of solving the same problem in the linear and 
non-linear formulation. Fig.2 shows graphs of the variation in the first and second moment of 
the quantity 6 as a function of cl, for B1= 0.5. Curves 1 and 2 are constructed from the 
results of solving the non-linear problem for cO=O.i and 0.2. Curves 1' and 2' correspond 
to the solution of the linear problem. Figs.3 and 4 show graphs of the variation of the first 
and second moment of the quantity 6 as a function of co. Curves 1-3 correspond to the par- 
ameters a, = 1, & = i, a1 = 1, 8,= 0.5; a, = 0.5 and p1 = I. When the linear formulation is used, 
the above moments do not exist except for the single case (5) -co when a, = 0.5 and &=I, 
which is depicted in Fig.3 by line 1'. Fig.5 shows graphs of the variation of the stationary 
density distribution of the probabilities for (x1= i,&= 0.5 and &,=O.i. Curve 1 corresponds 
to the solution of the non-linear problem, and curve 1' to that of the linear problem. 

The above results show that taking into account the finite deflections leads not only to 
a qualitative, but also to a quantitative difference between the results compared with the 
solution of the problem in which the deflections are assumed to be small. 
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